
6. Backpropagation training
6.1 Background
To understand well how a feedforward neural network is built and it
functions, we consider its basic first steps. We return to its “history” for
a while.
In 1949 D. Hebb proposed a learning rule that was later named
Hebbian learning. He postulated his rule of reinforcing active
connections only between neurons. In more modern approach
connections are either strengthened and weakened. Since the learning
is guided by knowing the target (class), this is known as supervised
learning.
The learning paradigm for a single perceptron neuron or node can be
summarised as follows.

150

• Set the weights and the threshold of the Heaviside function fh
(Section 2, p. 64) randomly

(6.1)
where fh is a step function with p variables and bias b=

(6.2)

and which produces outputs either 1 or 0.

151

• Give an input.
• Compute the output by taking the threshold value of the weighted

sum of the inputs.
• Alter the weights to reinforce correct decisions (classifications) and

weaken incorrect decisions - reduce the error.
• Give the next input and continue the process until stopping criterion

is true, no change in weights.

Next we show the most elementary perceptron algorithm for a single
neuron, such as in Fig. 6.1.

152

Fig. 6.1 The basic model of one neuron.

153

x0

x1

x2

xp

.

.

.

w0
w1w2

wp

output

input

Perceptron learning algorithm

1. Initialise weights and threshold
Define wi(t), i=0,..,p, as a weight from input i at time and as a
threshold value of the node. Set bias w0=- and constant x0=1. Assign
wi(0) to be small random values, i=1,..,p.
2. Give input and desired target output
Present input xi, i=1,..,p and desired output (class) y(t).
3. Compute output

(6.3)

154

4. Train weights, i=1,..,p
If a correct classification wi(t+1) = wi(t)
If output 0, but should be 1 (Class A) wi(t+1) = wi(t)+xi(t)
If output 1, but should be 0 (Class B) wi(t+1) = wi(t)-xi(t)

5. Iterate (from Step 2) until no change is encountered.

This was the most basic perceptron algorithm of all. The next
development was the introduction of learning rate 0< <1, making the
network take smaller step towards the solution.

155

The Step 4 was modified.

4. Train weights, i=1,..,p
If a correct classification wi(t+1) = wi(t)
If output 0, but should be 1 (Class A) wi(t+1) = wi(t)+ xi(t)
If output 1, but should be 0 (Class B) wi(t+1) = wi(t)- xi(t)

156

Widroff and Hoff proposed a quite similar algorithm after having
realised that it would be best to to change the weights much when the
weighted sum is a long way from the desired value, while altering them
only slightly when the weighted sum is close to that required to give
the correct solution. Weight adjustment is then carried out in
proportion to that error.
Using the Widrow-Hoff delta rule, the error term can be expressed as

(6.4)
where y(t) is the desired response of the neuron and y(t)-hat is the
actual response, either 0 or 1. Thus, will be either -1 or +1 if the two
values are not equal. If they are equal, the weights are unchanged.

157

Then Step 4 was modified in the following way.

4. Train weights according to Widroff-Hoff delta rule

where 0< <1 is the learning rate.

158

Let us look at the weights in the form of vector w so that its direction
in the variable space is taken into account. Then (in the 2-dimensional
space) the training or changing the weight vector can be shown like in
Fig. 6.2. Fig. 6.3 shows the process until a successful classification.

Fig.6.2 Training the weight vector.

159

Random starting direction

Final direction

Fig. 6.3 Beginning from a random normal direction of line 0 the weight
vector w is gradually trained to define the normal of L that separates
two classes.

160

L

0

1
2
3
4

w

We saw, intuitively, how the perceptron learning rule produces a
solution. It was proved by Rosenblatt who stated that, given it is
possible to classify a series of inputs, i.e., two classes can be separated
with a line, then a perceptron will find that classification. In other
words, he proved that the perceptron weight vector would eventually
align itself with the ideal weight vector, and would not oscillate around
it for ever.
In 1969 M. Minsky and S. Papert showed that a perceptron including
only one (processing) layer is incapable of solving some rather simple
nonlinear problems such as exclusive OR (XOR).

161

In 1986 J.L. McClelland and D.E. Rumelhart introduced their ideas to
apply more than one processing layers which boosted rapid
development in the area of neural network research.
In addition, noticing the advantage of nonlinear activation function
(sigmoid or others based on the use of exponential function e-a where
non-negative a is activation) at least for one layer was also necessary.
This enabled the development of the basic backpropagation learning
algorithm and several others. It became possible to perform
complicated multiclassification or regression tasks.

162

Before we will make acquaintance of backpropagation training, we begin
from the basic situation presented in Section 2 on p. 65, where two classes
of cases were entirely separable shown by a linear classifier. This is,
naturally, a simplified situation not present in real data sets. Still, it is a good
beginning to better understand the continuation guiding forward.
Let us use two lines defined by extending the presentation of p. 65, (bias
b=wl0, x0=1) to obtain the below expressions

(6.5)

depicted in Fig. 6.1. Vector x represents any case in the variable space (in Fig.
6.4 there are only two variables, p=2).
Instead of lines, planes are used for three-dimensional variable spaces and
generally hyperplanes for higher dimensions, that is, real data sets.

163

Fig. 6.4 Piecewise linear
classification for two non-linearly
separable classes that cannot be
separated with one line only, i.e.,
linearly.
Now the intersection of the positive
(upper) half spaces defined by the
two lines contains all cases of Class
A. The other three sections include
all cases of Class B. This implies that
by adding complexity, more
separating lines or mappings
generally, more complicated
divisions can be made.

164

Class A

Class B

x1

x2

w1

w2

6.2 Backpropagation approach

The backpropagation (BP) network is a multilayer feedforward network
with a different transfer or activation function, such as sigmoid, for a
processing node and a more powerful learning algorithm. (However,
terms used may vary and, sometimes, the term of multilayer
perceptron (MLP) network is used to mean the BP network.)
The cases (instances, items, samples,observations, patterns or
examples) of the training set to be used for building a BP network
(model) must be input many times in order for weights between nodes
to settle into a state for correct classification of input cases.

165

While the network can recognise cases similar to those learnt so far,
they are not able to recognise fully new (different) cases. To recognise
these, the network has to be retrained with these as training cases
along with previously known. If only new ones are provided for
retraining, then old cases may be forgotten. In this way, learning is not
incremental over time. This is the major limitation for supervised
learning networks. In addition, the backpropagation network is prone
to local minima. To overcome this limitation, some attachment or ”add-
on” should be employed, for instance, simulated annealing, to be
considered later.

166

Backpropagation is a learning method, which is a gradient descent
technique with backward error propagation (Fig. 6.5).The training case
set for the network has to be presented many times in order to train or
change network weights to model or map the chracteristics of training
data.
A gradient descent procedure searches for the solution along with the
negative of the gradient, steepest descent. The gradient concept is the
multidimensional extension for the one-dimensional derivative. For a
gradient, symbol called nabla is used to constitute the partial
derivative for each dimension (variable) xi, i=1,…,p, all of these forming
the vector (6.6).

167

Target output

Input
Actual
output Backward error

propagation

Fig. 6.5 The backpropagation network.

168

Input
layer

Hidden
layer(s)

Output
layer

169

(6.6)

Suppose x is the solution vector that minimises the criterion function
J(x). Beginning with an arbitrarily chosen vector x1, the procedure finds
the solution vector by iteratively applying the formula

(6.7)

until convergence, where k is a positive coefficient that sets the step
size and subscript k denotes the kth iteration and (nabla) is the
gradient operator.

170

Training is a search for the set of weights that will make the neural
network to have lowest error for a training set. The training technique
utilise minimisation methods to avoid performing exhaustive (brute-
force) search over all weight values. This would be impossible even for
small networks because of virtually infinite number of weight
combinations.
The sign or direction (up or down) of the gradient shows the following
information. For a negative gradient, the weight should be increased to
achieve a lower error. For a positive gradient, the weight should be
decreased to yield a lower error. For a zero gradient, the weight is not
contributing to the error of the network. See Fig. 6.6.

171

Fig. 6.6 Gradient vector of a single weight.

172

w

er
ro

r

Each of the weights is considered as a variable in training, because
these weight values will change independently as the neural network
changes. The partial derivatives of the weights indicate the
independent influence of each weight on the error function.
The backpropagation algorithm originating from Rumelhart, Hinton and
Williams (1986) is formulated below.

173

Backprogation algorithm

• Weight initialisation
Set all weights and node thresholds to small random numbers. The
node threshold is the negative of the weight from the bias node, in
which the activation level is fixed at 1.
• Activation computation
1. The activation level of an input unit is determined by the case

presented to the network.

174

2. The activation level oj of a hidden and output node is given by

(6.8)

where wij is the weight from input oi, j is the node threshold and is a
sigmoid activation function (or some else).

(6.9)

175

• Weight training
1. Start at the ouput nodes and process backward to the hidden layers

with a recursive equation. Adjust weights by

(6.10)
where wij(t) is the weight form node i to node j at time (iteration) t and

wij(t) is the weight adjustment.

176

2. The weight change is computed by
(6.11)

where is learning rate, 0< <1, for example 0.1 and j the error
gradient at node j. Convergence is often faster by adding a momentum
term (t>0)

(6.12)
where 0< <1.

177

3. The error gradient is given for the output nodes by
(6.13)

where yj is the desired target output, such as known class, yj–hat is the
actual output activation at output node j, and for the hidden nodes by

(6.14)
where oj is actual output activation and k is the error gradient at node
k to which a connection points from hidden node j.

178

4. Iterate until convergence in terms of the selected error criterion. An
iteration includes presenting a case, computing activations and
changing weights.

There are various stopping criteria. One is based on error to be
minimised. Since not all training cases are normally classified into
correct classes, a fixed threshold or cutoff value is used so that the
procedure is stopped if the error is below it. However, the criterion
does not guarantee generalization to new data, i.e., an appropriately
modified new model.

179

Another criterion is based on the gradient. The procedure is terminated
when the gradient is sufficiently small. Note that the gradient will be
zero at a minimum by definition.
A third one is based on crossvalidation performance (using a validation
set separate from the training and test sets to compute an error value
and to stop if this increases). This can be used to monitor
generalization performance during learning and to terminate when
there is no more improvement.
A simple ”elementary” stopping criterion is to stop after the maximum
number of iterations. More than one criterion can also be applied
jointly, and, for example, the maximum number of iterations can be the
last stopping alternative to be ”fired”.

180

The name backpropagation comes from the technique in which the
error (gradient) of hidden nodes are derived from propagating
backward the errors of output nodes calculated by the previous Eq.
(6.14) since the target values for the hidden nodes are not given.
The sigmoid activation function is good when it compresses the output
value into range [0,1] and hyperbolic tangent into [-1,1]. (On the other
hand, however, such a property is not always necessarily desirable.)
This accommodates large signals without saturation while allowing the
passing of small signals without excessive attenuation. Further, it is a
continuous, smooth function so that gradients required for a gradient
descent search can be calculated easily in the closed form.

181

Example

We still consider XOR problem and build a feedforward network as
given in Fig. 6.7.
The weights are initialised randomly:
W13=0.01, W14=0.02, W23=0.02, W24=0.03, W34=-0.02, Wb3=-0.01, Wb4=
-0.01
To compute activation, a training case of input vector (1,1) and desired
target (”class”) is employed (bias is always 1):

182

Fig. 6.7 A feedforward network for XOR function. Small random initial
weights are attached to the arcs or connections. (Note this network is
specific when there are arcs from the input layer to both later layers.
Normally in practice there is always layer by layer, only arcs from each layer
to its following layer.)

183

b

1

2

3

4

Bias node

Input

-0.01
-0.01

0.01
0.02

0.02
-0.02

0.03

Output

Inputs Output

(1,1) 0

(1,0) 1

(0,1) 1

(0,0) 0

Next the weight training follows assuming the learning rate =0.3 (actually
this is normally at most 0.1):

The rest of the weight training adjustments are omitted. Note that the
threshold which is the negative of the weight from the bias node is adjusted
likewise. It takes several iterations like this before the training process stops.
The following set of final weights gave the mean squared error of less than
0.01.
w13=5.62, w14=4.98, w23=5.62, w24=4.98, w34=-11.30, wb3=-8.83, wb4= -2.16

184

Derivation of backpropagation

Next we consider how to derive backpropagation training rule given by
(6.15)

If node j is an output node, then its error gradient is computed with
(6.16)

where
(6.17)

185

Here is a sigmoid function and
(6.18)

If node j is a hidden node, then the error gradient is given by
(6.19)

The backpropagation procedure minimises the error criterion
(6.20)

186

Gradient descent yields
(6.21)

According to the chain rule, we obtain
(6.22)

In the case when node j is an output node,
(6.23)

187

Thus
(6.24)

So we achieve
(6.25)

When node j is a hidden node, there is no yj. The chain rule produces
(6.26)

188

The ouput of node k is given by
(6.27)

Thus, the term can be transformed by
(6.28)

This results in
(6.29)

189

Furthermore
(6.30)

We obtain
(6.31)

(This presentation only considered a network with one hidden layer.)
To conclude, perhaps the most essential issue here was to notice the
difference in formulas (6.16) and (6.19).

190

Learning rate can be reduced along with iterations t, (t), so the steps
forward become shorter which aids to make fine-tuning looking for a
minimum. On the other hand, this may result in problem if the minimum is
local such as in Fig.6.8. Learning rate can be attemped to increase back
temporarily. Further, momentum, Eq. (6.12) on p. 177, is efficient in order to
jump over a ”ridge” in Fig. 6.8 and Fig. 6.9.
Addition of random noise (slight changes in weights trained) can be used to
perturb the gradient descent method from the track of the deepest descent,
and often this noise is enough to knock the process out of a local minimum.
Local minima can also be passed by using simulated annealing, a method to
be considered later.

191

Fig. 6.8 One-dimensional mapping or cross section of an error surface
along the gradient.

192

Gradient
descent

Local
minimum

Local
minimum

Global
minimum

Fig. 6.9 The addition of a momentum term can speed up convergence,
particularly along a ravine.

193

track through weight (or energy)
space without momentum

track with momentum speeds
converge in along
ravine surface

Subject to complexity of learning, it has been shown that the problem of
finding a set of weights for a network which performs the desired mapping
exactly for given training data is NP-complete. That is, we cannot find
optimal weights in polynomial time.
Learning algorithms like backpropagation are gradient descent methods
which seek only a local minimum. These algorithms usually do not take
exponential time (required by NP) to run. The empirically tested learning
time with a serial (non-parallel) computer for backpropagation is about O(N3)
where N is the number of weights (Hinton 1989). Just to compare, the time
complexity of self-organising map is O(nm2), in which n is the number of
input cases and m that of (output) nodes. However, these repsentations may
vary in the literature depending on what has actually analysed, e.g., taking
stopping criteria or convergence into account.

194

6.3 Derivatives of the activation functions

While basic feedforward neural networks use sigmoid, hyperbolic
tangent and linear activation functions, deep learning networks employ
linear, softmax and rectified linear unit (ReLU) ones
The derivative of the linear function

(6.32)
is simply

(6.33)

195

Typically, the softmax activation function, along with the linear
activation function, is used only on the output layer of the neural
network. Non-linearity is often needed in preceding layers to enable
the learning of complex data.
The softmax activation function

(6.34)

differs from those others in that its value is dependent on the other
output nodes, not just on the output node currently being calculated.

196

The z=(z1,…,zC) vector represents the output from all output nodes. The
derivative of the softmax activation function is as a partial derivative

(6.35)

when we remember that the derivative of ex equals the function itself.
This was presented as a partial derivative, because it is used for the
gradient of output vector z.
The derivative of the sigmoid activation function is the following.

197

(3.36)
Recognise that the advantage of derivating these functions including ex

is that, in a way, no actual derivation in the closed (symbolic) form is
necessary, because we can derive the derivative formula on the basis of
function itself. In fact, these are like recurrence formulas.
The derivative of the hyperbolic tangent function is the following.

(3.37)

Ultimately, the derivative of the rectified linear unit (ReLU) activation
function is straightforwardly.

198

(3.38)

Strictly thinking, rectified linear unit (ReLU) does not have a derivative
at 0. However, because of convention, the gradient of 0 is substituted
when x is 0.

199

6.4 Applying backpropagation

Backpropagation is a training method that adjusts the weights of the
network with its gradients computed. This is a form of gradient descent
since the process descends the gradients to lower values. While
adjusting weights, the network should yield more desirable outcomes.
The global error of the network computation process should fall during
training.
Training can be performed through two approaches called online and
batch training. In the former the weights are modified after input every
single training case (element). Training progresses to the next training
set case and also calculates an update to the network to complete one
iteration. Using all cases once is called an epoch. These are normally
made many times, sometimes even thousands or tens of thousands.

200

Batch training also utilises all the training cases. Nonetheless, the
weights are not updated for every iteration. Instead, we sum the
gradients for each training set case. Once we have summed these, we
can update the network weights.
Sometimes, we can set a batch size. For example, if there are 10 000
cases in the training set, the process could update the weights every
1000 cases, thereby causing the neural network weights to be updated
ten times during one epoch.
In stochastic gradient descent a training case is selected randomly, not
as above one by one for the whole training set and this all to be
repeated. Choosing random training case often converges to an
acceptable weight faster than looping through the entire training set
for each epoch.

201

Momentum and learning rate contribute to the success of training.
Choosing the suitable momentum and learning rate can impact the
effectiveness of training. The learning rate affects, as said, the speed at
which a neural network learns. Decreasing it makes the training more
meticulous. A higher learning rate might skip past optimal weight
settings. A lower one will mostly produce better results, but can greatly
increase running time. Lowering the learning rate as the network learns
can be an effective technique.
The momentum is a tool to combat local minima. A higher momentum
value can push the process past local minima encountered along the
track.
At the beginning of the process, the learning rate is at most 0.1. The
momentum is typically set to 0.9.

202

6.5 Other propagation training

The backpropagation algorithm has influenced many training
algorithms, for example, the above-mentioned stochastic gradient
descent. There are also others, such as two popular and efficient
algorithms named resilient propagation and Levenberg-Marquardt
algorithm.
Resilient propagation (Reidmiller and Braun 1993) differs from
backpropagation in the way of the use of gradients. Although the
resilient propagation does contain training parameters, these are not
defined by the user, but normally given by default.

203

The resilient propagation keeps an array of update values for the
weights, which determines how much each weight is altered. Now this
is much better compared with backpropagation, because the algorithm
adjusts individually the upadate value of every weight as training
progresses.
The update values are started at the default of 0.1, according to the
initial update values argument.
Another approach for an already trained neural network is to save the
update values once training stops and use them for the new training.
This will allow to resume training without the initial spike in errors
normally seen when resuming training.

204

Other parameters not determined by the user are also used for
training.
Levenberg-Marquardt algorithm is an efficient training method for
feedforward neural networks and often outperforms the resilient
propagation algorithm. Levenberg (1940) introduced its foundation in
numerical optimization, and Marquardt (1963) expanded it.
Levenberg-Marquardt algorithm is a hybrid algorithm on the basis of
Newton’s method and gradient descent (backpropagation). Levenberg-
Marquardt algorithm is an approximation of Newton’s method (Hagan
and Menhaj 1994). Although gradient descent is guaranteed to
converge to a local minimum (that might also luckily be global), it is
slow. Newton’s method is fast, but often fails to converge.

205

By using a damping factor to interpolate between the two, a hybrid
technique is obtained. The following equation presents how Newton’s
method is employed.

(6.39)
H-1 represents the inverse matrix of Hess, g represents the gradients
and W the weights. The Hessian matrix contains the second derivatives
according to Equation (6.40), where e represents neural network
output.

206

(6.40)

207

The second derivative is the derivative of the first derivative. Let us
recall that the derivative of the function is the slope at any point. The
slope indicates that the curve is approaching for a local minimum. The
second derivative can also be seen as a slope, and it points in a
direction to minimise the first derivative. The goal of Newton’s method
as well as Levenberg-Marquardt algorithm is to reduce all of the
gradients to 0.
Newton’s method will converge the weights of a neural network to a
local minimum, a local maximum or a saddle point (Fig. 6.10). Such
convergence is attained by minimising all gradients (first derivatives) to
0. These are 0 at local minima, maxima or saddle points.

208

209

Fig. 6.10 Local minimum, maximum and saddle point.

Local
minimum

Local
maximum

Saddle
point

w

er
ro

r

The algorithm implementation has to leave out local maxima and
saddle points. The Hessian matrix is typically approximated.
Levenberg-Marquardt algorithm enhances Newton’s method to the
following form

(6.41)

where an identity matrix I is multiplied with a damping coefficient . On
the diagonal, the elements of I are equal to 1, and all others are equal
to 0.

210

A compact survey on these two and other algorithms originating from
backpropagation is presented in the current article5.

5 H. Joutsijoki et al.: Evaluating the performance of artificial neural networks for the classification of
freshwater benthic macroinvertebrates, Ecological Informatics, 20, 1-7, 2014.

211

Example

In the following, some results are shown from the article6 where both
feedforward neural networks and other machine learning methods
were used to classify biometric data in order to verify subjects on the
basis of their saccade eye movements.
As to feedforward neural networks, the most promising results were
gained with Levenberg-Marquardt algorithm, some results of which are
shown. In addition, some results given by logistic discriminant analysis,
support vector machines and radial basis function networks will be
shown.
6 Y. Zhang and M. Juhola: On biometric verification of a user by means of eye movement data
mining, Proceedings of the Second International Conference on Advances in Information Mining and
Management (IMMM2012), p. 85-90, Venice, Italy, 2012.

212

In the verification task, in fact, classification there are two classes to be
detected as those of authenticated (e.g. computer) users and those of
impostors (such as if attempting to log in illegally). The task is to
recognise a subject to be either an authenticated or impostor on the
basis of measured eye movement data.
Five recordings were measured form each subject. There were 132
subjects tested so that every subject was one by one in the role of an
authenticated user and then in that of an impostor. Saccades were
recognised in the saccade signals and feature values computed from
them. In the preprocessing, all the feature data were normalised into
range [0,1].
The verification results given as classification accuracies are shown in
Table 6.1.

213

Table 6.1 Average accuracies of binary classification in percent.

214

Neural
network of
8 hidden
nodes

Neural
network of
10 hidden
nodes

Logistic
discriminant
analysis

Support
vector
machine with
Gaussian
kernel

Radial basis
function
neural
network

Authenticated
users

80.0 79.6 86.6 92.1 88.5

Impostors 80.2 82.7 77.4 84.8 88.9

6.6 Training and testing neural networks

When a large data set composed of known training cases
corresponding to known classes or output values exists, perhaps the
simplest manner to divide the whole data set into the training and
testing data set is to apply the hold out method, in which the data set
is divided into two halves of equal size. The partition has always to be
made randomly subject to which part a case is selected. Then we may
assume that both sets follow the class distribution of the original
population of the data. The former set is used for building the model
that is tested with the latter.
What is a large enough data set for hold out method essentially
depends on the number of weights of the network to be learnt.

215

The rule of thumb is to use at least ten times the number of the
weights to a training set. This comes from an error measure derived
statistically (not to be considered here) with some certain assumptions.
Thus, sometimes smaller numbers may be enough depending on data
and a task to be computed.
Generally, the important principle is that enough cases are selected for
a training set to guarantee that a neural network can be trained to
model the characteristics of a data source. Therefore, if the data source
is scarce, a training set is set to include, e.g, 60%, 80% or even 90% of
all data, and the rest is left for its test set.

216

Crossvalidation method is usually applied to machine learning tasks,
particulary in the circumstances of relatively restricted numbers of data
cases at disposal.
In k-fold crossvalidation, the data set is first divided into k subsets of
approximately equal size. Always the partition is executed randomly.
Then each subset of 10% size is used as test set and the other k-1
subsets as a training set. One by one, this is performed for each of 10
subsets. Typically 10-fold crossvalidation is applied according to Fig.
6.11.
If the data set is small, leave-one-out is good where the training set
includes all but one case to be used as the only test case of a model.
Thus, n models and test cases are used when n is the number of the
whole data set.

217

Fig. 6.11 One by one each 10% partition forms a single test set and the
rest of the subsets the corresponding training set.

218

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

Training set
Test set

When we apply any machine learning methods, one or just a few test
runs are rather a random ”pinpoint experiment” than an actual test
setup. Because of ever-existent randomness subject to the selection of
training and test sets and, in general, all data available, we have always
to run numerous test series and ultimately to compute their mean and
standard deviation (and possibly some additional central values) in
order to obtain reliable information about the capability of
computational models prepared.
Furthermore, neural networks as some other machine learning
methods contain random initial values for their weights or some
control parameters. Thus, they need several different beginnings for
the otherwise same models. See Fig. 6.12 and Fig. 6.13.

219

Fig. 6.12 Black, red and green vertical arrows represent different
random initial weights appearing in random locations of the weight
space. Accordingly, sometimes the training process may result in
different local minima representing somewhat different combinations
of weight values, i.e., models constructed.

220

A local
minimum

A local
maximum

w

er
ro

r

Fig. 6.13 10 times 10-fold crossvalidation containing 10 models each
tested 10 times produces 100 test runs altogether.

221

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

10% of
the data

set

Training set
Test set10 initialisations for

the same training set

10-fold
crossvalidation
runs

When feedforward neural networks are constructed, often another
separate subset is still separated. Then there are three disjoint subsets
formed: training set (8 times 10%), test set (10%) and validation set
(10%). Of course, their size may vary, but the total is naturally 100%. A
validation set is fully kept outside the training and testing of a model. It
is used only to evaluate an error measure, usually mean squared error
(MSE) or root mean squared error (RMSE).
In theory, training and validation mainly follow a kind of double curves
outlined in Fig. 6.14. Then an optimal stopping is just before the
validation curve will begin to increase. See also Fig. 6.15.

222

Fig. 6.14 When a single model is trained along with successive
iterations with the same training set, first its error (black) curve
converges fast and then gets smooth oscillating slightly. The validation
set separate from the training and test sets, instead, may begin to
increase after some point A (red curve). This is a consequence of
overtraining.

223

error

training
iterations

validation errorA

(a) (b)
Fig. 6.15 (a) The dots represent overtraining of polynomial approximation
when the training data curve has been learnt too precisely. A better choice is
a less accurate learning according to the dashed model. (b) Overtraining in
the form of boundary A in the classification of two classes after too detailed
learning. On the other hand, B is too rough.

224

x x

yy A

B

Overtraining, overlearning or overfitting is a phenomenon that is not
easy to control very strictly. However, it is often useful to stop training
early enough when the error (black curve) in Fig. 6.14 has dropped and
begun to stabilise more or less.
Fig. 6.15(a) describes too detailed training when too many values of a
polynomial function are taken tightly as such from the curve resulting
in overlearning. A better approximation is a smoother curve including
the main properties of the curve but not getting stuck to ”noise”. Fig.
6.15(b) describes too exact and too poor boundaries between the two
classes. Obviously, a mapping between these two approaches subject
to their complexity would be better.

225

Too exact learning in Fig. 6.15 is not good, because if we take a new
sample from the data source, when it again follows the distribution of
the data source, but is not entirely similar to the previous sample. In
other words, the cases of the new sample are not located precisely in
the same places compared to the previous sample in the variable
space. Therefore, an overtrained model would not cope well with the
new sample, but probably a more flexible model is better. This issue
concerns generalization. A neural network constructed is supposed to
be also used for novel data. Moreover, from time to time it is best to
update the model with a partially updated training set.

226

